Patient Advocate to Examine Engagement Strategies

Effective Patient Engagement Strategies to Develop Future Therapies and Advance Patient Safety is the title of the Celeste Castillo Lee Memorial Lectureship, scheduled for Friday, Nov. 3.

The speaker will be Kevin J. Fowler, a health care executive with more than 30 years of experience in pharmaceutical organizations. Fowler spent more than 20 years at Pfizer, where his final position was senior director of public affairs. During a career involving a wide range of skills and experiences, he has demonstrated leadership in sales management, training, public affairs, global marketing, patient advocacy, and patient marketing.


Fowler has brought this voice to several organizations as a volunteer, serving on the Kidney Health Initiative Patient Family Partnership Council, the advocacy committee of the National Kidney Foundation, the patient advisory group of the American Society of Transplantation, the board of directors of the American Association of Kidney Patients, and a patient advisory committee of the Kidney Research Institute. He has designed digital patient customer relationship marketing programs and coordinated care strategies aimed at improving patient outcomes, creating brand loyalty, and reducing health care costs.

From 2007 to 2012, he served as the senior product manager for patient education and advocate relations at Astellas U.S., the U.S. affiliate of Tokyo-based Astellas Pharma. From 2013 to 2014, he served as a senior product manager for global marketing at AbbVie Inc., a biopharmaceutical company based in North Chicago, Ill.

Inflammation and Fibrosis Could Be Keys to Progression of AKI Toward CKD

The role of inflammation and fibrosis in the progression of AKI to CKD will be the subject of the Barry M. Brenner, MD, Endowed Lectureship on Friday, Nov. 3.

The speaker will be a scientist who has done extensive research on the topic, Manjeri A. Venkatachalam, MBBS, a professor in the departments of pathology, medicine, and biochemistry at the University of Texas Health Science Center in San Antonio.

Dr. Venkatachalam has a background in both clinical and basic science. He was a house physician in internal medicine for two years prior to five years training in anatomic pathology. He then gained experience as a staff physician practicing diagnostic pathology and renal pathology while conducting basic research.

His research into kidney physiology and pathology has examined proteinuria, glomerulosclerosis, and tubulointerstitial disease. Clinical and epidemiological studies point to the importance of AKI as a harbinger leading to CKD. During the past six years, his research has focused on the pathogenesis of tubulointerstitial pathology in the transition from AKI to CKD. As an early investigator of hemodynamic mechanisms that drive progression of CKD, Dr. Venkatachalam has noted the role that new AKI episodes could play by reducing available renal mass and interacting with CKD pathophysiology to compromise tubule recovery and worsen clinical status.

Dr. Venkatachalam’s laboratory has worked to identify the cellular, biochemical, and signaling basis for defective tubule repair after AKI as well as the role played by failed tubule recovery in the AKI-CKD transition. His most recent research has focused on the role of nuclear and mitochondrial DNA damage in the pathogenesis of tubule atrophy after AKI and the large-scale loss of mitochondria that takes place in the dedifferentiated tubules that become atrophic.

Dr. Venkatachalam serves on the editorial boards of the Journal of the American Society of Nephrology and Kidney International and has been on the boards of Laboratory Investigation and the American Journal of Pathology.

He has served on several National Institutes of Health committees and study sections. For ASN, he has served on the program committee several times and on the acute renal failure advisory group.

He received his medical degree from the Calcutta Medical College and Calcutta University in India, with residencies at Upstate Medical Center in Syracuse, New York, and Boston City Hospital in Massachusetts.

Regulation of Sodium Transporters Will Be Lecture Subject

Alicia M. McDonough, PhD, will discuss “Inflammatory Cytokines Regulate Proximal and Distal Sodium Transporters” in the Robert W. Schrier, MD, Endowed Lectureship on Friday, Nov. 3.

Dr. McDonough is professor of integrative anatomical sciences at the Keck School of Medicine of the University of Southern California (USC) in Los Angeles. Upon joining the USC faculty in 1981, she began studying the assembly of sodium pump subunits and defining the molecular mechanisms of sodium pump isoform regulation in cardiac and skeletal muscle by potassium and hormones. The McDonough lab initiated studies to determine the renal mechanisms responsible for regulation of sodium, potassium, and blood pressure balance as well as how homeostasis is disrupted in disease states and can be corrected therapeutically.

The lab recently investigated ion transporters’ phosphorylation, abundance, sub-cellular distribution, and activity. The researchers’ findings have enabled them to define how stimuli such as dietary sodium and potassium, angiotensin II, cytokines, and injury increase renal sodium transport, as well as how the resultant hypertension decreases sodium reabsorption via pressure natriuresis. To pursue these projects, the McDonough lab has engaged with collaborators across the United States, and around the world.

Dr. McDonough has published extensively and given many lectures on these topics. She has received the Established Investigator Award from the American Heart Association (AHA), the E.H. Starling Distinguished Lectureship from the American Physiological Society (APS), the Donald Seldin Lectureship from the AHA Council on the Kidney in Cardiovascular Disease, and several teaching awards.

She serves on several editorial boards, study sections, and committees for the ASN, APS, and AHA.

Dr. McDonough earned her doctorate in physiology at the University of Hawaii and was a postdoctoral scholar at the University of California, San Francisco, Cardiovascular Research Institute and Columbia University.