Kovesdy CP. Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl (2011) 2022; 12:7–11. doi: 10.1016/j.kisu.2021.11.003
Cupisti A, et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J Nephrol 2018; 31:457–473. doi: 10.1007/s40620-018-0497-z
Thirunavukarasu AJ, et al. Large language models in medicine. Nat Med 2023; 29:1930–1940. doi: 10.1038/s41591-023-02448-8
Miao J, et al. Performance of ChatGPT on nephrology test questions. Clin J Am Soc Nephrol 2023; 19:35–43. doi: 10.2215/CJN.0000000000000330
Qarajeh A, et al. AI-powered renal diet support: Performance of ChatGPT, Bard AI, and Bing Chat. Clin Pract 2023; 13:1160–1172. doi: 10.3390/clinpract13050104
Aiumtrakul N, et al. Personalized medicine in urolithiasis: AI chatbot-assisted dietary management of oxalate for kidney stone prevention. J Pers Med 2024; 14:107. doi: 10.3390/jpm14010107
Sun H, et al. An AI dietitian for type 2 diabetes mellitus management based on large language and image recognition models: Preclinical concept validation study. J Med Internet Res 2023; 25:e51300. doi: 10.2196/51300
Papastratis I, et al. Can ChatGPT provide appropriate meal plans for NCD patients? Nutrition 2023; 121:112291. doi: 10.1016/j.nut.2023.112291
Chatelan A, et al. ChatGPT and future artificial intelligence chatbots: What may be the influence on credentialed nutrition and dietetics practitioners? J Acad Nutr Diet 2023; 123:1525–1531. doi: 10.1016/j.jand.2023.08.001
Niszczota P, Rybicka I. The credibility of dietary advice formulated by ChatGPT: Robo-diets for people with food allergies. Nutrition 2023; 112:112076. doi: 10.1016/j.nut.2023.112076