• 1.

    Holweger K, et al. Accurate measurement of individual glomerular filtration rate in cancer patients: An ongoing challenge. J Cancer Res Clin Oncol 2005; 131:559567. doi: 10.1007/s00432-005-0679-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Launay-Vacher V, et al. Prevalence of renal insufficiency in cancer patients and implications for anticancer drug management: The Renal Insufficiency and Anticancer Medications (IRMA) study. Cancer 2007; 110:13761384. doi: 10.1002/cncr.22904

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:3141. doi: 10.1159/000180580

  • 4.

    Costa E Silva VT, et al. A prospective cross-sectional study estimated glomerular filtration rate from creatinine and cystatin C in adults with solid tumors. Kidney Int 2022; 101:607614. doi: 10.1016/j.kint.2021.12.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Stevens LA, et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 2007; 18:27492757. doi: 10.1681/ASN.2007020199

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Levey AS, Stevens LA. Estimating GFR using the CKD epidemiology collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 2010; 55:622627. doi: 10.1053/j.ajkd.2010.02.337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Williams EH, et al. CamGFR v2: A new model for estimating the glomerular filtration rate from standardized or non-standardized creatinine in patients with cancer. Clin Cancer Res 2021; 27:13811390. doi: 10.1158/1078-0432.CCR-20-3201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Inker LA, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012; 367:2029. doi: 10.1056/NEJMoa1114248

  • 9.

    Aapro M, Launay-Vacher V. Importance of monitoring renal function in patients with cancer. Cancer Treat Rev 2012; 38:235240. doi: 10.1016/j.ctrv.2011.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Martin L, et al. Improvement of the Cockcroft-Gault equation for predicting glomerular filtration in cancer patients. Bull Cancer 1998; 85:631636. https://www.jle.com/fr/revues/bdc/e-docs/amelioration_de_lequation_de_cockcroft_gault_pour_predire_le_debit_de_filtration_glomerulaire_chez_les_patients_cancereux_70160/article.phtml?cle_doc=00011210&cle_doc=00011210

    • Search Google Scholar
    • Export Citation
  • 11.

    Wright JG, et al. Estimation of glomerular filtration rate in cancer patients. Br J Cancer 2001; 84:452459. doi: 10.1054/bjoc.2000.1643

  • 12.

    Calvert AH, et al. Carboplatin dosage: Prospective evaluation of a simple formula based on renal function. J Clin Oncol 1989; 7:17481756. doi: 10.1200/JCO.1989.7.11.1748

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    McMahon BA, Rosner MH. GFR measurement and chemotherapy dosing in patients with kidney disease and cancer. Kidney360 2020; 1:141150. doi: 10.34067/kid.0000952019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Poole SG, et al. A comparison of bedside renal function estimates and measured glomerular filtration rate (Tc99mDTPA clearance) in cancer patients. Ann Oncol 2002; 13:949955. doi: 10.1093/annonc/mdf236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Stevens LA, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 2009; 75:652660. doi: 10.1038/ki.2008.638

  • 16.

    Zhu XR, et al. Corticosteroids significantly increase cystatin C levels in the plasma by promoting cystatin C production in rats. Ren Fail 2019; 41:698703. doi: 10.1080/0886022X.2019.1638798

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Inker LA, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 2021; 385:17371749. doi: 10.1056/NEJMoa2102953

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Khan I, et al. Comparison of cystatin C and creatinine-based estimated glomerular filtration rate equations among elderly chronic kidney disease patients attending a tertiary care hospital: A prospective cross-sectional study. Clin Nephrol 2020; 93:217226. doi: 10.5414/CN109573

    • Crossref
    • Search Google Scholar
    • Export Citation

Performance of GFR Estimating Equations in Patients with Solid Tumors

  • 1 Paul E. Hanna, MD, MSc, and Meghan E. Sise, MD, MS, are with the Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston.
Restricted access

Important decisions about diagnosing kidney disease, managing drug dosing, and considering kidney replacement therapy rely on an accurate estimation of the glomerular filtration rate (GFR), especially in patients with cancer (1, 2). Despite its continued use, the Cockcroft-Gault equation (3), originally created to assess kidney function based on serum creatinine in 1976, has significant limitations that may be even greater in patients with cancer who have sarcopenia. To address this, Costa E Silva and colleagues (4) compared the measured GFR using chromium-51-labeled ethylenediamine tetraacetic acid (51Cr-EDTA) clearance in 1200 patients

Save