The role of inflammation in the kidney-gut crosstalk in kidney diseases
Ferguson JF, et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 2019; 5:e126241. doi: 10.1172/jci.insight.126241
Li F, et al. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol 2019; 9:206. doi: 10.3389/fcimb.2019.00206
Shi K, et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 2014; 59:2109–2117. doi: 10.1007/s10620-014-3202-7
Vemuri R, et al. Hypertension promotes microbial translocation and dysbiotic shifts in the fecal microbiome of non-human primates. Am J Physiol Heart Circ Physiol [published online ahead of print February 11, 2022]. doi: 10.1152/ajpheart.00530.2021; https://journals.physiology.org/doi/abs/10.1152/ajpheart.00530.2021
Manfredo Vieira S, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359:1156–1161. doi: 10.1126/science.aar7201
Krajicek E, et al. Nuts and bolts of fecal microbiota transplantation. Clin Gastroenterol Hepatol 2019; 17:345–352. doi: 10.1016/j.cgh.2018.09.029
Pluznick JL, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 2013; 110:4410–4115. doi: 10.1073/pnas.1215927110
Wu P-H, et al. The relationship of indoxyl sulfate and p-cresyl sulfate with target cardiovascular proteins in hemodialysis patients. Sci Rep 2021; 11:3786. doi: 10.1038/s41598-021-83383-x
Hsu H-J, et al. The association of uremic toxins and inflammation in hemodialysis patients. PLoS One 2014; 9:e102691. doi: 10.1371/journal.pone.0102691
Viaene L, et al. Serum concentrations of p-cresyl sulfate and indoxyl sulfate, but not inflammatory markers, increase in incident peritoneal dialysis patients in parallel with loss of residual renal function. Perit Dial Int 2014; 34:71–78. doi: 10.3747/pdi.2012.00276
Claro LM, et al. The impact of uremic toxicity induced inflammatory response on the cardiovascular burden in chronic kidney disease. Toxins (Basel) 2018; 10:384. doi: 10.3390/toxins10100384
Rapa SF, et al. Pro-inflammatory effects of indoxyl sulfate in mice: Impairment of intestinal homeostasis and immune response. Int J Mol Sci 2021; 22:1135. doi: 10.3390/ijms22031135
Zhong J, et al. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney Int 2021; 100:585–596. doi: 10.1016/j.kint.2021.05.028
Kirabo A, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 2014; 124:4642–4656. doi: 10.1172/JCI74084
Pei G, et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv 2019; 5:eaaw5075. doi: 10.1126/sciadv.aaw5075
Kikuchi K, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun 2019; 10:1835. doi: 10.1038/s41467-019-09735-4
Yang C-Y, et al. Synbiotics alleviate the gut indole load and dysbiosis in chronic kidney disease. Cells 2021; 10:114. doi: 10.3390/cells10010114
Mafra D, et al. Food as medicine: Targeting the uraemic phenotype in chronic kidney disease. Nat Rev Nephrol 2021; 17:153–171. doi: 10.1038/s41581-020-00345-8
de la Visitación N, et al. Probiotics prevent hypertension in a murine model of systemic lupus erythematosus induced by Toll-like receptor 7 activation. Nutrients 2021; 13:2669. doi: 10.3390/nu13082669