• 1.

    Leonberg-Yoo AK, et al. Urine potassium excretion, kidney failure, and mortality in CKD. Am J Kidney Dis 2017; 69:341349. doi: 10.1053/j.ajkd.2016.03.431

  • 2.

    Gritter M, et al. Effects of short-term potassium chloride supplementation in patients with chronic kidney disease. J Am Soc Nephrol, published online ahead of print May 24, 2022. doi: 10.1681/asn.2022020147; https://jasn.asnjournals.org/content/33/9/1779

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Terker AS, et al. Unique chloride-sensing properties of WNK4 permit the distal nephron to modulate potassium homeostasis. Kidney Int 2016; 89:127134. doi: 10.1038/ki.2015.289

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Grimm PR, et al. Regulated dephosphorylation of NCC shapes the renal potassium switch pathway. FASEB J 2018; 32(S1):620.12. doi: 10.1096/fasebj.2018.32.1_supplement.620.12; https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2018.32.1_supplement.620.12

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kovesdy CP, et al. Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur Heart J 2018; 39:15351542. doi: 10.1093/eurheartj/ehy100

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Neal B, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med 2021; 385:10671077. doi: 10.1056/NEJMoa2105675

  • 7.

    Morris Jr. RC, et al. Differing effects of supplemental KCl and KHCO3: Pathophysiological and clinical implications. Semin Nephrol 1999; 19:487493. PMID: 10511388; https://www.researchgate.net/publication/12789862_Differing_effects_of_supplemental_KCl_and_KHCO3_Pathophysiological_and_clinical_implications

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Boyd-Shiwarski CR, et al. Effects of extreme potassium stress on blood pressure and renal tubular sodium transport. Am J Physiol Renal Physiol 2020; 318:F1341F1356. doi: 10.1152/ajprenal.00527.2019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Appel LJ, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997; 336:11171124. doi: 10.1056/NEJM199704173361601

  • 10.

    Verma A, et al. Aldosterone in chronic kidney disease and renal outcomes. Eur Heart J 2022;00:111. https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehac352/6652163?login=false

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Oberleithner H, et al. Endothelial cells as vascular salt sensors. Kidney Int 2010; 77:490494. doi: 10.1038/ki.2009.490

  • 12.

    Bakris GL, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 2020; 383:22192229. doi: 10.1056/nejmoa2025845

  • 13.

    Pitt B, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 2021; 385:22522263. doi: 10.1056/nejmoa2110956

Potassium Supplementation in Chronic Kidney Disease

Carmen Cajina Carmen Cajina, MD, and Vivek Bhalla, MD, are with the Division of Nephrology and the Stanford Hypertension Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA.

Search for other papers by Carmen Cajina in
Current site
Google Scholar
PubMed
Close
and
Vivek Bhalla Carmen Cajina, MD, and Vivek Bhalla, MD, are with the Division of Nephrology and the Stanford Hypertension Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA.

Search for other papers by Vivek Bhalla in
Current site
Google Scholar
PubMed
Close
Restricted access
Save