Wishart DS, et al. HMDB: The Human Metabolome Database. Nucleic Acids Res 2007; 35:D521–D526. doi: 10.1093/nar/gkl923
Grams ME, et al. Metabolomics research in chronic kidney disease. J Am Soc Nephrol 2018; 29:1588–1590. doi: 10.1681/ASN.2018030256
Rhee EP. A systems-level view of renal metabolomics. Semin Nephrol 2018; 38:142–150. doi:10.1016/j.semnephrol.2018.01.005
Cheng Y, et al. The relationship between blood metabolites of the tryptophan pathway and kidney function: A bidirectional Mendelian randomization analysis. Sci Rep 2020; 10:12675. doi: 10.1038/s41598-020-69559-x
Farhana R, et al. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites 2019; 9:76. doi: 10.3390/metabo9040076
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:1957–1971. doi: 10.1093/bib/bbx170
Dubin RF, Rhee EP. Proteomics and metabolomics in kidney disease, including insights into etiology, treatment, and prevention. Clin J Am Soc Nephrol 2020; 15:404–411. doi: 10.2215/CJN.07420619
Meijers BKI, et al. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin J Am Soc Nephrol 2009; 4:1932–1938. doi: 10.2215/CJN.02940509
Gupta N, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol 2020; 40:1239–1255. doi: 10.1161/ATVBAHA.120.314139
Kikuchi K, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun 2019; 10:1835. doi: 10.1038/s41467-019-09735-4
Sánchez-López E, et al. Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of polycystic kidney disease. Sci Rep 2019; 9:806. doi: 10.1038/s41598-018-37512-8