• 1.

    Wishart DS, et al. HMDB: The Human Metabolome Database. Nucleic Acids Res 2007; 35:D521D526. doi: 10.1093/nar/gkl923

  • 2.

    Grams ME, et al. Metabolomics research in chronic kidney disease. J Am Soc Nephrol 2018; 29:15881590. doi: 10.1681/ASN.2018030256

  • 3.

    Rhee EP. A systems-level view of renal metabolomics. Semin Nephrol 2018; 38:142150. doi:10.1016/j.semnephrol.2018.01.005

  • 4.

    Cheng Y, et al. The relationship between blood metabolites of the tryptophan pathway and kidney function: A bidirectional Mendelian randomization analysis. Sci Rep 2020; 10:12675. doi: 10.1038/s41598-020-69559-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Farhana R, et al. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites 2019; 9:76. doi: 10.3390/metabo9040076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:19571971. doi: 10.1093/bib/bbx170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Dubin RF, Rhee EP. Proteomics and metabolomics in kidney disease, including insights into etiology, treatment, and prevention. Clin J Am Soc Nephrol 2020; 15:404411. doi: 10.2215/CJN.07420619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Meijers BKI, et al. p-Cresyl sulfate and indoxyl sulfate in hemodialysis patients. Clin J Am Soc Nephrol 2009; 4:19321938. doi: 10.2215/CJN.02940509

  • 9.

    Gupta N, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol 2020; 40:12391255. doi: 10.1161/ATVBAHA.120.314139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kikuchi K, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun 2019; 10:1835. doi: 10.1038/s41467-019-09735-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sánchez-López E, et al. Sheathless CE-MS based metabolic profiling of kidney tissue section samples from a mouse model of polycystic kidney disease. Sci Rep 2019; 9:806. doi: 10.1038/s41598-018-37512-8

    • Crossref
    • Search Google Scholar
    • Export Citation

Metabolomics Approaches Confer a Deeper Biologic Understanding of Kidney-Related Diseases

  • 1 Alexander M. Buko, PhD, is vice president, Human Metabo-lome Technologies, Boston, MA. His career extends over 39 years with the US Food and Drug Administration, Abbott Laboratories, Biogen, and HMT, leading bioanalytic laboratories using mass spectrometry to support medical research in preclinical and clinical studies with various proteomics and metabolomics solutions.
Restricted access
Save