Beitelshees AL, et al. Sodium-glucose cotransporter 2 inhibitors: A case study in translational research. Diabetes 2019; 68:1109–1120. doi: 10.2337/dbi18-0006
Neal B, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377:644–657. doi: 10.1056/NEJMc1712572
Zinman B, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373:2117–2128. doi: 10.1056/NEJMc1600827
Wiviott SD, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380:347–357. doi: 10.1056/NEJMoa1812389
Lin YH, et al. Renal and glucose-lowering effects of empagliflozin and dapagliflozin in different chronic kidney disease stages. Front Endocrinol (Lausanne) 2019; 10:820. doi: 10.3389/fendo.2019.00820
Perkovic V, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380:2295–2306. doi: 10.1056/NEJMoa1811744
McMurray JV, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381:1995–2008. doi: 10.1056/NEJMoa1911303
Hahn K, et al. Acute kidney injury from SGLT2 inhibitors: Potential mechanisms. Nat Rev Nephrol 2016; 12:711–712. doi: 10.1038/nrneph.2016.159
Nadkarni GN, et al. Acute kidney injury in patients on SGLT2 inhibitors: A propensity-matched analysis. Diabetes Care 2017; 40:1479–1485. doi: 10.2337/dc17-1011
Skrtić M, et al. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 2014; 57:2599–2602. doi: 10.1007/s00125-014-3396-4
Lytvyn Y, et al. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol 2015; 308:F77–F83. doi: 10.1152/ajprenal.00555.2014
Hahn K, et al. Serum uric acid and acute kidney injury: A mini review. J Adv Res 2017; 8:529–536. doi: 10.1016/j.jare.2016.09.006
O’Neill J, et al. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Renal Physiol 2015; 309:F227–F234. doi: 10.1152/ajprenal.00689.2014
Sano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation 2019; 139:1985–1987. doi: 10.1161/CIRCULATIONAHA.118.038881
Cantarelli C, et al. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant 2019; 19:2407–2414. doi: 10.1111/ajt.15369
Dekkers CCJ, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 2018; 20:1988–1993. doi: 10.1111/dom.13301
Neuen BL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7:845–854. doi: 10.1016/S2213-8587(19)30256-6
Gilbert RE, Thorpe KE. Acute kidney injury with sodium-glucose co-transporter-2 inhibitors: A meta-analysis of cardiovascular outcome trials. Diabetes Obes Metab 2019; 21:1996–2000. doi: 10.1111/dom.13754
Menne J, et al. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis. PLoS Med 2019; 16:e1002983. doi: 10.1371/journal.pmed.1002983
Singh P, et al. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 2013; 40:138–147. doi: 10.1111/1440-1681.12036
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017; 13:629–646. doi: 10.1038/nrneph.2017.107
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 2015; 87:297–307. doi: 10.1038/ki.2014.287
Sayour AA, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med 2019; 17:127. doi: 10.1186/s12967-019-1881-8
Chang YK, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One 2016; 11:e0158810. doi: 10.1371/journal.pone.0158810
Fujita Y, et al. Low erythropoietin levels predict faster renal function decline in diabetic patients with anemia: A prospective cohort study. Sci Rep 2019; 9:14871. doi: 10.1038/s41598-019-51207-8
Chu C, et al. The SGLT2 inhibitor empagliflozin might be a new approach for the prevention of acute kidney injury. Kidney Blood Press Res 2019; 44:149–157. doi: 10.1159/000498963
Neumiller JJ, Kalyani RR. How does CREDENCE inform best use of SGLT2 inhibitors in CKD? Clin J Am Soc Nephrol 2019; 14:1667–1669. doi: 10.2215/CJN.05340419