Beitelshees AL, et al. Sodium-glucose cotransporter 2 inhibitors: A case study in translational research. Diabetes 2019; 68:1109–1120. doi: 10.2337/dbi18-0006
Neal B, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377:644–657. doi: 10.1056/NEJMc1712572
Zinman B, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373:2117–2128. doi: 10.1056/NEJMc1600827
Wiviott SD, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380:347–357. doi: 10.1056/NEJMoa1812389
Lin YH, et al. Renal and glucose-lowering effects of empagliflozin and dapagliflozin in different chronic kidney disease stages. Front Endocrinol (Lausanne) 2019; 10:820. doi: 10.3389/fendo.2019.00820
Perkovic V, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380:2295–2306. doi: 10.1056/NEJMoa1811744
McMurray JV, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381:1995–2008. doi: 10.1056/NEJMoa1911303
Hahn K, et al. Acute kidney injury from SGLT2 inhibitors: Potential mechanisms. Nat Rev Nephrol 2016; 12:711–712. doi: 10.1038/nrneph.2016.159
Nadkarni GN, et al. Acute kidney injury in patients on SGLT2 inhibitors: A propensity-matched analysis. Diabetes Care 2017; 40:1479–1485. doi: 10.2337/dc17-1011
Skrtić M, et al. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia 2014; 57:2599–2602. doi: 10.1007/s00125-014-3396-4
Lytvyn Y, et al. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol 2015; 308:F77–F83. doi: 10.1152/ajprenal.00555.2014
Hahn K, et al. Serum uric acid and acute kidney injury: A mini review. J Adv Res 2017; 8:529–536. doi: 10.1016/j.jare.2016.09.006
O’Neill J, et al. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Renal Physiol 2015; 309:F227–F234. doi: 10.1152/ajprenal.00689.2014
Sano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation 2019; 139:1985–1987. doi: 10.1161/CIRCULATIONAHA.118.038881
Cantarelli C, et al. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant 2019; 19:2407–2414. doi: 10.1111/ajt.15369
Dekkers CCJ, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab 2018; 20:1988–1993. doi: 10.1111/dom.13301
Neuen BL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7:845–854. doi: 10.1016/S2213-8587(19)30256-6
Gilbert RE, Thorpe KE. Acute kidney injury with sodium-glucose co-transporter-2 inhibitors: A meta-analysis of cardiovascular outcome trials. Diabetes Obes Metab 2019; 21:1996–2000. doi: 10.1111/dom.13754
Menne J, et al. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis. PLoS Med 2019; 16:e1002983. doi: 10.1371/journal.pmed.1002983
Singh P, et al. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 2013; 40:138–147. doi: 10.1111/1440-1681.12036
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017; 13:629–646. doi: 10.1038/nrneph.2017.107
Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 2015; 87:297–307. doi: 10.1038/ki.2014.287
Sayour AA, et al. Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med 2019; 17:127. doi: 10.1186/s12967-019-1881-8
Chang YK, et al. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One 2016; 11:e0158810. doi: 10.1371/journal.pone.0158810
Fujita Y, et al. Low erythropoietin levels predict faster renal function decline in diabetic patients with anemia: A prospective cohort study. Sci Rep 2019; 9:14871. doi: 10.1038/s41598-019-51207-8
Chu C, et al. The SGLT2 inhibitor empagliflozin might be a new approach for the prevention of acute kidney injury. Kidney Blood Press Res 2019; 44:149–157. doi: 10.1159/000498963
Neumiller JJ, Kalyani RR. How does CREDENCE inform best use of SGLT2 inhibitors in CKD? Clin J Am Soc Nephrol 2019; 14:1667–1669. doi: 10.2215/CJN.05340419
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a novel class of antidiabetic medications that have been demonstrated to improve cardiovascular outcomes in patients with diabetes. SGLT2 inhibitors regulate serum glucose levels by selectively blocking type 2 glucose transporters in the proximal convoluted tubules, thereby reducing the amount of glucose and sodium reabsorbed. Increased delivery of sodium and chloride to the macula densa induces tubuloglomerular feedback, leading to constriction of the renal afferent arteriole and to reduction of intraglomerular pressure and albuminuria. Also, these medications have been shown to reduce cellular oxidative stress and to improve energy balance. Whereas SGLT2 proteins are markedly