• 1.

    Brenner BM. Nephron adaptation to renal injury or ablation. American Journal of Physiology-Renal Physiology 1985; 249:F324F337.

  • 2.

    Vallon V, et al.. Glomerular hyperfiltration in experimental diabetes mellitus: Potential role of tubular reabsorption. J Am Soc Nephrol 1999; 10:25692576.

    • Search Google Scholar
    • Export Citation
  • 3.

    Thomson SC, et al.. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 2012; 302:R75R83.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Vallon V, et al.. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol-Renal Physiol 2012; 304:F156F167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Vallon V, et al.. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol-Renal Physiol 2014; 306:F194F204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Food and Drug Administration. FDA Background Document: Endocrinologic and Metabolic Drugs Advisory Committee Meeting; 2018.

  • 7.

    Zinman B, et al.. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373:21172128.

  • 8.

    Neal B, et al.. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377:644657.

  • 9.

    Wiviott SD, et al.. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380:347357.

  • 10.

    Perkovic V, et al.. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380:22952306.

  • 11.

    Wanner C, et al.. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375:323334.

  • 12.

    Mazidi Mohsen, et al.. Effect of sodium-glucose cotransporter-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: A systematic review and meta-analysis of 43 randomized control trials with 22,528 patients. J Am Heart Assoc 2017; 6:6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes–2019. Diabetes Care 2019; 42:S103S123.

    • Search Google Scholar
    • Export Citation
  • 14.

    Strippoli GF, et al.. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2006; Oct 18:CD006257.

    • Search Google Scholar
    • Export Citation
  • 15.

    Cheng J, et al.. Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: A meta-analysis. JAMA Intern Med 2014; 174:773785.

    • Crossref
    • Search Google Scholar
    • Export Citation

Sodium Glucose Co-transporter 2 Inhibitors

  • 1 Christos Argyropoulos, MD, FASN, is assistant professor, and division chief, nephrology, in the department of internal medicine at the University of New Mexico School of Medicine in Albuquerque, NM.
Restricted access
Save