Polycystic Kidney and Liver Disease Researcher to Receive Homer W. Smith Award

Aclaimed researcher Stefan Somlo, MD, will receive the Homer W. Smith Award and deliver an address on Friday, Nov. 8, of Kidney Week. He will speak on “Polycystic Kidney and Liver Diseases: From Gene Discovery to Mechanism.”

Dr. Somlo is C.N.H. Long Professor of Medicine (Nephrology) and professor of genetics at the Yale University School of Medicine. The Homer W. Smith Award recognizes individuals who contribute to our basic understanding of how the kidneys function in health and disease, and Dr. Somlo’s contributions have greatly advanced our knowledge of human polycystic diseases.

Dr. Somlo’s seminal contributions to the fields of polycystic kidney disease (PKD) and liver disease began with disease gene discoveries in the pre-genome era. His later studies yielded insights into the genetic mechanisms of PKD, the functions of polycystins, and the innovative application of genetically complex animal models to in vivo and preclinical discoveries in PKD. Dr. Somlo’s laboratory identified the second gene for dominant polycystic kidney disease and two genes for familial forms of polycystic liver disease without kidney cysts. His group was part of a consortium that identified the recessive polycystic kidney disease gene.

Dr. Somlo’s laboratory translated these gene discoveries into mechanistic studies of polycystic diseases using biochemical, cell biological, and in vivo approaches. Much of his laboratory’s efforts have focused on defining disease pathogenesis using mouse models of polycystic diseases. Their work has also explored the effects of discrete signaling pathways in cyst formation and the genetic interrelationships between different polycystic disease genes.

Dr. Somlo has headed the section of nephrology at Yale since 2003. He has led a cross-disciplinary, multi-investigator polycystic disease research program at Yale and has developed clinical and translational components to implement his discoveries. He has mentored a large number of fellows. He conducts both basic science and patient-oriented research aimed at understanding the role of FGF-23 in bone-kidney-pancreatic axis dysfunction and cardiovascular complications. His research strives to cross from the level of the whole patient, to animal cell culture models, and down to single molecules.

Dr. Somlo is a graduate of Harvard College and the College of Physicians and Surgeons of Columbia University. He did his clinical training at Albert Einstein before returning to Yale.

Coburn Lecture to Cover Endothelial Dysfunction and Vascular Calcification

Orson W. Moe, MD, will present the Jack W. Coburn Endowed Lectureship on Friday during Kidney Week. His topic will be the roles of fibroblast growth factor-23 (FGF-23) and the transmembrane protein Klotho in endothelial dysfunction and vascular calcification. Klotho mediates the role of FGF-23 in bone-vascular-pancreatic control of phosphate and calcium, and Dr. Moe has published studies showing that Klotho is an early biomarker for chronic kidney disease (CKD) and that Klotho deficiency contributes to soft-tissue calcification in CKD. Dr. Moe’s research includes solute transport and metabolism, kidney stones, acid-base disturbance, and cardiovascular complications of CKD.

Dr. Moe is professor of internal medicine and physiology at the University of Texas Southwestern Medical Center in Dallas. He is the director of the Charles and Jane Pak Center of Mineral Metabolism and Clinical Research and is an active member of the nephrology division at Southwestern. He holds the Charles and Jane Pak Distinguished Chair in Mineral Metabolism Research and the Donald Seldin Professorship in Clinical Investigation.

Dr. Moe has an active practice in patient care and participates in the education of medical students, graduate students, residents, and fellows. He conducts both basic science and patient-oriented research on renal physiology and metabolism as well as epithelial biology. His research strives to cross from the level of the whole patient, to animal cell culture models, and down to single molecules.

Dr. Moe serves on the editorial boards of the American Journal of Physiology and Journal of the American Society of Nephrology. He is the editor of Current Opinions of Nephrology and Hypertension and editor of the textbook The Kidney by Seldin and Giebisch.

He is a member of the American Society of Clinical Research, American Association of Physicians, American Society of Nephrology, and American Physiologic Society. Dr. Moe received his medical degree from the University of Toronto.

ASN gratefully acknowledges Amgen for support of the Jack W. Coburn Endowed Lectureship.

ASN Congratulates 2013 Award Recipients

<table>
<thead>
<tr>
<th>Award</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>David J. Salant, MD</td>
<td>John P. Peters Award recipient</td>
</tr>
<tr>
<td>Jeremy S. Duffield, MD, PhD</td>
<td>Young Investigator Award recipient</td>
</tr>
<tr>
<td>Stefan Somlo, MD</td>
<td>Homer W. Smith Award recipient</td>
</tr>
<tr>
<td>Lori Hartwell</td>
<td>President’s Medal recipient</td>
</tr>
<tr>
<td>Mark E. Rosenberg, MD, FASN</td>
<td>Robert G. Nairns Award recipient</td>
</tr>
</tbody>
</table>

For more information about these awards or how to nominate a candidate, please visit wwwASN.org/awards.

Homer W. Smith Award recipient

Homer W. Smith was chairman of physiology at the University of Virginia before moving in 1928 to New York University (NYU). As director of the Physiology Laboratories at NYU, he developed and refined the concepts of glomerular filtration and tubular absorption and secretion of solutes.

The clarity of Dr. Smith’s logic and the skill with which he explained his ideas transformed them into vivid and powerful concepts that are the cornerstones of our present understanding of normal and abnormal renal function. He attracted the best and brightest to the field, to NYU, and to the Mount Desert Island Biological Laboratory, where he spent many summers studying renal physiology in fish.

The Homer W. Smith award recognizes individuals who contribute to our basic understanding of how the kidneys function in health and disease.